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A METHODOLOCY FOR ESTIMATING MISSION RELIABILITY

0.0 Introduction

This research is specifically directed towards estimating
vehicle mission reliability where data is generated from proving
ground or actual field testing. In proving ground testing the
mission profile is assumed to be an accurate representation of
field usage. Thus, the mission reliability estimate will be
indicative of that which should be achieved by the vehicle in
actual use conditions. The typical vehicle testing situation
which is the basis for estimation will now be delineated.

In proving ground or field testing there is normally a target
test bogy which is a specified mileage (or kilometers) for the
vehicle. As the vehicle traverses the proving ground, failures
are generated*. This situation is shown pictorially in Figure 1,

below. The vehicle will sometimes not exactly meet the test bogy

Vehicle No.

1

e

-l
-

'l
v

-

Figure 1 Proving Ground Vehicle Testing Situation

*Actually, failure incidents are generated which are subsequently
scored by an offical Scoring Committce.
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due to the randomness associated with a product testing program. i
This testing situation is analogous to a random variate }
generator where each variate (tii) is generated by the vehicle

after a repair. It will be assumed that the distribution regen-

erates after each failure. A further, and more complex, approach

would be to assume that the distribution does not regenerate. i

5? Specific approaches to mission reliability estimation will
be adapted to this testing situation. The emphasis was to develop
and present easy-to-use techniques for mission reliabilitv estima-
tion. The approaches considered in this report are: (i) failure
data analysis, (ii) exponential distribution, and (iii) binomial
distribution. Application of each technique is covered in the

following sections.




SECTION I

FAILURE DATA ANALYSIS BASED ON

TOTAL TIME ON TEST PLOTS




Failure Data Analysis Based on

Total Time on Test Plots

1.0 Introduction

In order to compute mission reliability, we present the
adaptation of a new method in this section. The methods pre-
sented here are non-parametric in nature in the sense that
they do not assume the nature of the underlying failure dis-
tribution. These methods are based on the concept of the
total time on test transform. The mathematical concept of
the total time on test transform was introduced in Chapters
5 and 6 of reference [3]*. The total time on test plot is
useful in choosing a probabilistic model in terms of a failure
distribution to represent the failure behavior of the data.
Thus, by using the methodology presented here, the reliability
engineer can make a decision regarding which failure distribu-
tion ''best" represents the data. The approach is graphical in
nature and thus is very easy to implement in the Army's environ-
ment. The procedures presented will help the reliability en-
gineer to plot the test data in a systematic way and develop
suitable failure models. Once a decision is made on the selec-
tion of the failure model, mission reliability can be casily
computed.

It is not always necessary to develop the failure model.
From the plots presented here, a hazard function can be easily

developed and hence using the knowledge about the hazard

*See page 71.
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function we can easily compute the mission reliability. The

graphical estimation of the failure rate or hazard rate function k
is used to compute the mission reliability. The methods discussed
here can analyze incomplete data. The total time on test plot

has a theoretical basis, and the mathematical theory for these
plots has been developed [8]. These plots converge to a trans-
form of the underlying probability distribution as the sample

size increases.
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2.0 Concept of the Total Time on Test Transform

Mission reliability of a military system is evaluated by

testing the system and observing the times when failures occurred.

The underlying distribution is generally not known. Hence,
nonparametric methods will be of tremendous value to evaluate the
mission reliability.

In order to develop the concept of the total time on test
transform, we first present the method of evaluating reliability
based on the assumption that the underlying failure distribution
is exponential [See also page 47].

Suppose we have an ordered sample from an exponential dis-

tribution

£(e) =2 £>0, 250 (1)
or f(t)=2e %, t>0, 050 )
where A = % = failure rate

and 6 = mean life or MTBF

We write the ordered sample as

St (3)

where the index n means that n items are placed on test and in
the above case, we observe all the n failures. In case, we only
observe r failures when we have n items on test, then the ordered

sample will be written as

<t (4)

0= tnO < tn1 -2 nr

It is clear that the total time on test is the sum of all

observed complete and incomplete life times and is given by

T(tnr) = total time on test (a function of tnr)

=ntpp (=D (egp-tyg) oo (nerd) (bt o)

6
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Based on total time on test, we can estimate 6, the MTBF

ni T (n-r)tnr (5)

for the system. It is well known [10,11,12] that

A 1
er,n T r T(tnr) (6)

is the maximum likelihood estimator of 0 and is the unique
mintmam variancee and onbiased estimator of o, The above estimator
has been extensively used for the evaluation of system reliability
and the development of confidence bounds with the associated
mathematics given in [14]. However, it must be remembered
that this estimator is based on the assumption that the under-
lying failure distribution is exponential.

*Now, we present the development of the concept of total time
on test where the underlying distribution is not known and is
any arbitrary distribution. Given the ordered sample information
(Eq. (3)), the empirical distribution for the underlying arbitrary

distribution may be written as

0 , t<t,
i- t <t <t

F_(t) = a0 tni St St a0 (7)
Lo, ot e

The use of the above empirical distribution is well known
to the engineer, Now, we develop the concept of total time on
test based on the above empirical distribution (See Figure 1).

Let us define

Folo(u - inflt|F_(t) » u) (8)

s it et
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For example, if % < u < %, then Fn'l(u) = t, o, and in general for

L u < i+1, we have

n - n
Flaw =t i=0,1,2 n -1 (N 3
n n,i+l’ S e : F

Now, let us compute the following intefral

-1
Fn (E) F-l(z)

[ (1 - Fn(u)) du =/ F_(u) du (10)

”
(8]

T et e e

where ﬁn(u) =1 - Fn(u). Using eqs. (7) and (9), we have

¥
-1,r \
Fol )
/s SEgp ol
S F_(u) du —jil[l - = ] [tnj - tn, j—1]
_1 . _
; =3 jﬁ (n j + 1)(tnj tn,jjl)
-1 _ _ _
: = 5 [n €t + (n 1)(tn2 tnl) +...+ (n-r+l)
; (tnr-tn,r-l)J
~1,r
Fn (H)_ 1
oF f F, (u) du = & T(t ) (11)
o

The last equaiton follows from eq. (5). Let us now consider the

I limiting case when n +e and % »> v. In this case, it is well

known that

il
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F;l(ﬁ) F l(v)
lim f F_ (u) du=f F (u du (12)
(e} (o)
n > w
LY.
n

uniformly in v,(0 < v < 1). Here F(.) is the underlying failure
distribution function and the above statement means that as the
sample size n approaches infinity, the empirical distribution

given by (7) converges uniformly to the actual distribution F(.).

Let us define

1 Loy _
HF (v) & f F (u) du ,

(o]

(13)

[«
A
<
I A
—

as the total time on test tranform.

For any distribution function F(t), it is well known that
-1
F ~(1)
Hgl(l) ==Jf F (u) du = expected value of r.v.t. (14)
o

Thus, the basic relationship between the total time on

test transform given by (13) and total time on test T(tnr) given

by (5) is
. F L (v) '
lim L T(e_) =/ F (u) du = H}j,l(v) (15)
(o]
n -»>®
r
TV

Let us consider the example of an exponential distribution.

We have

G(t) =1 - e t/0 , t >0, 0 >0 (16)

10
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Hence, the total time on test transform is piven by

-1
G (V)
wlo - f ¢ (u) du

N———
(@]
e ... DN PIINNE, ...

!
sllia

el

i
]
~~
<
S
o
)
—~
c
S’

O

G “(v)
= 8 _/. d G (u)
o
= 8v , 0 <v<l (17)

And, we have

-1

H. (v)

L -8y, 0<vc<l (18)
Hot(w)

Thus, by scaling the total time on test transform by its mean, the

scaled total time on test transform is transformed into a 45°

line on the interval [0,1].




2.1 Relationship of Total Time on Test Transform to Failure Rate

The total time on test transform is related to the failure
rate for the underlying failure distribution. Let us remember

that the failure rate or hazard rate h(t) is given by [see 14]

= £(t)
h(e) = R(t) (19)
= __f_it_:.)__ = f£(t) (20)

1-R(t)  F(t)

and

o
R(t) = exp [-J[ h (u) d ul (21)
o
Thus, we see that £(t), F(t), R(t) and h(t) are all related
to each other and the knowledge about any one of them determines

the remaining three. Now, we observe that

-1

d -1 d f V_
= H_ " (v) = F (u) d
T A A J [
- l -v
£iF Levy]
v = F(u)
1 - F(t) - 1-F(t)

£[F L (F(e)) ]

3 *%




Thus, the rate of change of the total time on test transform
is equal to one divided by the associated failure rate. This
means that if we have a plot of total time on test transform, we
can estimate the failure rate from it.

If the underlying failure distribution F has an increasing
failure rate (IFR), i.e. h(t) increases with t, then the rate
of change of H;l(v) is decreasing and hence H;l(v) is a concave
function in v, (0 < v < 1). On the other hand, if the underlying

distribution has a decreasing failure rate (DFR), i.e. h(t)

decreases with t, then Hgl(v) is a convex function in v, (0 < v < 1).
This property about the nature of the total time on test transform
can be used to understand the behavior of the failure rate for
the underlying system. This will give us an idea whether the
failure rate is increasing or decreasing during a certain time
period.

From eq. (22), it is also clear that HF determines F if F
is absolutely continuous. Since absolutely continious distributions
are dense in the class of all failure distributions, we see that
H;l(v) determines F in general. This is an important property
because it tells us that H;l(v) determines F and we can use the
total time on test transform for identification of the failure
distribution model for the system.

One of the important concepts in reliability theory is the
concepts of failure rate on an average. A failure distribution
F is said to have increasing failure rate average (IFRA) if the
cumulative failure rate on an average with respect to time

increase with time. Thus, the distribution F is IFRA if




t
/h(u) du + t >0 (23)

(o]

1=

From eq. (21), it is clear that

t
jfh(u) du = - 1n R(t) = - 1n F(t) (24)

o
Hence, we can restate the definition that distribution F has
increasing failure rate average (F is IFRA) if :—lff?jZEl
increasing (non-decreasing) in t > 0. Similarly, F has decreasing
failure rate average (F is DFRA) if :—19%—E££l is decreasing
(non-increasing) in t > 0.

Now we give the behavior of the total time on test
transform for IFRA and DFRA distributions. If failure distribution
F is IFRA (DFRA), than H;l(v)/v is non-increasing (non-decreasing)
in v, 0 < v <1 and H;l(v)/H;l(v) lies above (below) the 45° line.
The proof for this statement is as [ollows.

Let F be IFRA with a probability density function f. Then

as given by eq. (23), we have that

t
%fh(u)duftg_o
o
where h(t) = EiEl
F(t)

t
Let S(t) =./. F(u) du, then S(t)/t is always non-increasing

. o = . . . .
in t > 0 because F(u) is always non-increasing in t > 0. Also

t
s§c§ - .é F(u)du (25)
t F(t)

in non-increasing in t > 0. Let v = F(t) in eq. (25), then
then we have that H;l(v)/v is non-increasing in v > 0. Similarly

we can prove the result when F is DFRA.
14
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3.0 Failure Distribution Model Identification Based on Total

Time on Test Transform

Hoowas pointed out in the Tast section that the totat time
on test transform H;l(v) determines the underlying failure
distribution F. We also showed that for the exponential distri-
bution, if we plot the scaled total time on test transform
(eq. (18)), we get a 45° line on the interval [0, 1]. Thus, a
45° line indicates that the underlying distribution is exponential.
Similarly, we can develop relationships for other distributions.

For the Weibull distribution, we have

F(e) = 1 - exp[-(DP1 , t>0 (26)

where B > 0 is the shape parameter and 6 > 0 i= 'he scale
parameter or the characteristic life. We also snowed that

(see eq. (14))

H;l(l) expected life for Weibull r.v.

6 T(L + %) 27

The results for the Weibull distribution are given in references

114,17,18,24, and 25]. 1In this case,

1 o t\ 8
H; (v) = ./F expl[- (5) ]dt (28)

(o]

Based on eqs. (28) and (27), we can plot the scaled total

time on test transforms for Weibull distribution. The approx-

e

imate shapes for these plots for different values of the shape

parameter B are given in Figure 2. It is clear that the plots

15
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Figure 2 - Scaled Total Time on Test Transform for

Weibull Distribution (B is the shape parameter)
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are convex which means that we have decreasing failure rate
for B < 1 and concave which means that we have an increasing
failure rate for 8 > 1. The exponential distribution is the same as
B = 1 and hence we have a 45° line as proven before.

For the gamma distribution, the probability density function
is

f(e) = N gl gmAt t >0 >0, » >0 (29
T?ET e , > Y n , )

\

where n is the shape parameter and A is the scale parameter. Also,

H%l(l) expected life for gamma r.v.

n
x (30)

Again, for the gamma distribution, we can plot the scaled
total time on test plots as given in Figure 3. These plots
are concave functions indicating an increasing failure
rate for n > 1.

For the lognormal distribution, we have

F(e) = o[ 1Rt u] (31) |

where ¢ [-] is the cumulative distribution for the standard
normal variable. Again, for the lognormal distribution, u is

the scale parameter and o is the shape parameter. For each

o > 0, the scaled total time on test plot crosses the 45° line

at most once from above and the approximate shapes for these
graphs is given in Figure 4. The abscissa values for these
cross-over point decreases with increasing o values. Thus, for
some values of o, the failure rate for the lognormal distribution
is neither always an increasing failure rate nor a decreasing

failure rate.
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Figure 3 - Scaled Total Time on Test Transform for

Gamma Distribution (nis the shape parameter)
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Figure 4 - Scaled Total Time on Test Transform for

Lognormal Distribution (¢ is the shape

parameter)




The approximate shapes of the total time on test plots for the

trucated normal distribution are given in Figure 6. For the normal

P R

distribution, we always have an increasing failure rate.

pragey
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Figure 5 - Scaled Total Time on Test Transform for

Truncated Normal Distribution
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4.0 Total Time on Test Plots Based on Test Data

In this section we are going to explain how to plot the total
time on test transform when we have test data for the system
under study. The plots are similar to the scaled total time
on test transforms discussed before. These plots can be used
to identify the underlying failure distribution based on the
shape of the plots as discussed in the last section. The plots
may also be used to evaluate the failure rate and hence the

mission reliability by using the relation
r
R(t) = exp[- f h(u) dul. (32)
o

Model identification can be aided by the use of transparent
overlays of the scaled total time on test transforms for well
known distributions such as the Weibull, lognormol, normal, gamma,
etc. We are going to discuss the plots for different test

data situations.

Joa il




4.1 Total Time on Test Plots when all the Failures are Observed

If we put n items on test and observe all rhe failures,

then we have test data as Tollows:

(33)

I A
-
A

Thus all the observations are on the age of failure of

items all of which are put on life test at time 0. Let n(u)

be the number of items working at time 0 < u <t . Then it is
clear that
T(t) = total time on test at time t
t
= 1. n(u) du (34)

O
Actually eq. (34) is a finite sum since n(u) is a step function
which is nonincreasing.
Also, remember that (from eqs. (13) & (15))

Flv)

oy () 2 f

(o]

F(u) du =~ %—T(tnr) ‘ (35)

under the conditions mentioned befcre, i.e. n o and % > v,

Thus, we plot

T(t_.)
___ni° (36)
T(tnn)
i, ) - . . )
versus _, 1 = 1,2,...,n. This plot is a function on [O, A onte .

1] to [0, 1] and hence no additional scaling is necessary. This
scaled total time on test plot tends to look like the plot of
scaled total time on test transform of the underlying distribution,

i.e.




HI_;I (v)

for 0 < v <1 (37)
-1
Hp (L

as n » « and

S|k

4.1.1 Example (Based on example 10.1 in reference [14])

The data in Table 1 represents a 245 hour vibration simu-
lation test on a half-ton truck. The truck was shaken on a
simulator for a total of 245 hours. The time into testing at

which a failure occured was recorded.

Table 1 - Vibration Simulation: Failure Time

on a Half-Ton Truck

21.2 74.7 108.6 157.4
47.9 76.8 112.9 164.7
59.2 84.8 127.0 196.8
62.0 91.0 143.9 214. 4
74.6 93.3 151.6 218.9

1n this case we have n = 20 and values in Table 1 are

the times tai i=1,2,...,20. Also tnn = 218.9. Hence, we

i
) e L - .

plot T(Lni)/T(tnn) versus — for i 1,2,...,20. The values for

the plot are given in Table 2. The data given in Table 2 is

plotted in Figure 6. The statistical test given in reference

[14] based on which the above example is constructed concludes

that we cannot contradict the hypothesis that the exponential

distribution can be used to model the time to failure for this

system.

24




Table 2 - Values for Scaled Total Time on Test Plot

i T(tni)/T(tnn) i T(tni)/T(tnn)
1 0.097 11 0.496
2 0.219 12 0.516
3 0.270 13 0.580
4 0.283 14 0.657
5 0.341 15 0.693
6 0.341 16 0.719
7 0. 351 17 0.752
8 0.387 18 0.899
9 0.416 19 0.979
10 0.426 20 1.000

The scaled total time on test transform for the exponential

distribution is a straight line and hence we would expect the
scaled total time on test plot for our system to lie close to
the 45° line. From Figure 6, it is clear that this indeed is
Lthe case and the plot croses the 45 line two times Thus the
technique of total time on test plot is consistent with

statistically validating the exponential failure model.
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Figpure 6: Scale Total Time on Test Plot for the Test |

- Data for a Half-Ton Truck




4.2 Total Time on Test Plots with Incomplete Data

One of the important features of the total time on test
plots is that we can evaluate the reliability when we have
incomplete data. Incomplete data may be due to time truncated f
testing, censored data or the failure data containing with- |
drawals. In addition, the methodology can also handle grouped
data. For all of these situations, we are going to present
the methodology and explain how to plot the total time on test
graphs. The methodology will also be explained by the help of

sample problems which are typical of the military situation

it

when testing for reliability. Test situations with incomplete
data are very common and hence it is important to have a method-
ology to deal with this situation. There are several reasons
why all the items put on test cannot be tested to failure in-

i cluding truncating the test due to economic reasons.

. e ndild
(Lt

4.2.1 Total Time on Test Plots Based on Grouped Data

In many test situations, failures are recorded in terms of

number of failures within specified time intervals. The actual
times at which failures occur are not observed. Let us define
| the grid on the time axis such that failures are observed during

each interval. Let the grid be

.l 0 = wo’n < wl,n < L ..< “G,n < wj+1,n < ... (38)

] a window as this is the

.
We call the interval [wa,n, wj+1,n

(j+1)th interval during which failures are recorded and the data
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consists of total number of failures during this interval. In

each window, we choose a point Ej (perhaps the midpoint),

n’

such that Wj’n < Ej,n < W3+1’n.

Let F (similar as defined by eq. (7)) be an approximation

to the empirical distribution defined at wi n and ﬁi n for j = 1,
oy *
2,...,m where m is the minimum index such that all windows beyond
wm n have no observations.
’

Then, using eq. (10), we observe that the total time on

test plot for grouped data is given by

1 (39)

(1~

-1 k
Hy [Fn(wk,n)] 51 [1-F(Ej,n)][wj,n B wj-l,n

J

As n »® , we can prove [3] that the above total time on

{
#
i
§
§
2
{
:

test transform for grouped data converges uniformly to H;l(t).

4.2.1.1 Example

We are interested in evaluating the reliability of a sub-
system of a tank. We are evaluating the reliability based on
field data and 100 subsystems were monitored for failures. We

have the following data

‘ Table 3 - Failures of a Tank Subsystem

y { Kilometers Number of Failures
! 1000 11
1 1000 < t.< 2000 26
2000 < t < 3000 28
. 3000 < t < 4000 20
- 4000 < t < 5000 14
b 5000 < t < 6000 1
Ll 6000 < t < @ _0
3 100

A —



Thus, for this example we have 6 windows or subintervals

during which failures are observed. The grid is uniforw because f
all the windows are of equal length. The approximation of the

cmpirical distribution I"n is

wk,n Fn(wk,n) :
1,000 0.11 ;
2,000 0.37
3,000 0.65 ]
4,000 0.85 :
5,000 0.99
6,000 1.00

Also, if we use the midpoint of each window, we have

Ek,n Fn(gk,n)
500 0.11
1,500 0.37
2,500 0.65
3,500 0.85
a 4,500 0.99
3 5,500 1.00
{
:l Hence, using eq. (39), we can compute the following table
for the total time on test transform.

Wy




1 Fo G ) B (R, (0 1))
0.11 890
0.37 1,520
0.65 1,870
0.85 2,020
0.99 2,160
1.00 2,170

We also know that H;I(l) is equal to the expected life for
the tank subsystem when n »® . Hence, the scaled total time

on test plot'can be developed using the following table.

y He' (v) /Hpt (1)

‘ 0.11 0.41

2 0.37 0.70

:4 0.65 0.86

iJ 0.85 0.93

A? 0.99% 0.99

B 1.00 1.00

&

T7‘ The scaled total time on test plot using the data in the

previous table is given in Figure 7. For this plot, it is clear
that the underlying failure distribution has an increasing
failure rate on average property. This distribution may also

be modeled using the Weibull or gamma distribution.
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oy _ Figure 7 Scaled Total Time on Test Plot for the

2 | Failures of a Tank Subsystem
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4.3 Total Time on Test Plots with Truncated Data

For several test situations, testing is done for a given

period and is terminated at some point in time Tmax' If we
had n items on test, then we observe r < n failures over the

] Thus, the total time on test for this

interval [0, Tmax .

situation is (see eq. (34))
"

T(t) = [ n(uw du , 0

(o]

(40)

I A

< T
— max

. . . i,
For this situation we plot T(tni)/T(Tmax) versus i, 1

1,2,...,k. For this we have
-1
T(t,)  Hp (p)

(41)

T(Thax) H;l(p)

as n + o and % + v where p = F(Tmax)' Hence, total time on test

data plots should be compared with suitably scaled total time

on test transforms.

1L
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4.4 Total Time on Test Plots with Censored Data

In iy test situations, we place noitems on test and stop

the test as soon as the rth (r n) failure is observed., For this

sitvation we plot

as

n

T(t_.:)
Nl versus % ,1=1,2, T (42)
T(tnr)
The underlying limiting convergence for this case is
T(t,)  Hp' (vp)
N (43)
T(ty) Hgl (p)

> @ % > pand 0 < v < 1.

Thus, again the total time on test data plots should be

compared with suitably scaled total time on test transforms.

33
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4.5 Total Time on Test Plots for Failure Data Containing
Withdrawals or Suspended Items

In some test situations, items are taken off of test for
reasons other than failure [14]. For instance, a test may be
stopped if a test stand breaks down or a test vehicle becomes
involved in an accident. Or, we may want to purposely place
more items on test than we intend to fail in order to decrease
the test time. In this section, we are presenting a methodology
to handle suspended items or withdrawals using the concept of
total time on test plots.

Let tl’ t ..,tn be independent random variables with

2 ]
distribution F. Suppose, we only observe

Yi = min (ti, zi) i=1,2,...,n (44)

where Zi's are constants. If t; > 4y, then we say that item i

was lost to observation at time Qi or the item was suspeaded at

time li. Hence, let

0 = ¢t < t < ... <t (45)

n0 — nl - - "nk
be the observed failure times. For this case, the total time

on test is given by (using eq. (34))

L.
(e, ) = [ " n(uw du (46)

nl
o
Hence, we plot

T(t_.) .
N1 versus % , i=1,...,k 47)

T(tnk)
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For this situation, the model identification is not possible
using the scaled total time on test plots for well known dis-

tributions for comparison. However, we can show that the total

time on test plot will tend to lie above (below) the 45° line

if F is IFR(DFR),

4.5.1 Example

Let us consider an example of failure data with suspended

items as given in reference [14]. We put 10 items on test but

only observe six failures and four items are suspended or with-
drawn during testing. The test data is given in Table 4.

Based on this table, the ordered six failure times are

544 < 663 < 897 < 914 < 1084 < 1099

Hence, the total time on test are given in Table 5. The table
has been developed using Figure 8.

Table 4 - Suspended Test Data

Hours on Test Status of Item

544 Failure
663 Failure
802 Suspension
827 Suspension
897 Failure
914 Failure
939 Suspension
1084 Failure
1099 Failure
1202 Suspension




Table 5 - Total Time on Test

i ni T(thy) Tt ) /T(ty) gk
1 544 5440 0.613 D.166
2 663 6511 0.734 0.333
3 897 8218 0.926 0.500
4 914 8303 0.936 0.666
5 1084 8838 0.996 0.833
6 1099 8868 1.000 1.000

1 S5 (544) I"I

2 - l (663)1"2

3 1 . * 802(5,)

. i * 827(s,)

! |
5 . i ’ * 897(F4)
- . i e 4

6 _ ' 1 * 91 (Fa)

7 o L% 939(8)

N E i ¥ 1084(1)

'! )
9 - ! % 1099(1“6)
10 -~ ! i ‘ *(1202)34
IRV Vy Vv
Total Time 5440 6511 8218 8838T
on Test
8303 8868
Figure 8 - Total Time on Test Computation for

the Suspended Test Data
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The data given in Table 5 is plotted in Figure 9. This is
the scaled total time on test plot for the failure data with
suspended items. Based on this plot, we can say that the underlyiang

failure distribution has increasing failure rate (IFR).
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.& 0.9 1.0

Figure 9 Scaled Total Time on Test Plot for Suspended

Test Data
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5.0 Some Important Results on Total Time on Test Plots

Let the observed failure times with or without censoring be
0 - Fn0 * tn1 ¢ e S Unk (48) t

as given in section 4.5. If the underlying failure distribution

is exponential as given by
F(t) =1 - e t/® (49)
then the total time on test until the next failure is giwen by

t t
1 k
[ " n(u) du , [ n2 n(u) du, ... jn n(u) du (50)

© thl ‘n,k-1

Leze T g o wenTI

and these are distributed as independent random variables each ;
with the exponential distribution. Let us make an assumption
about the test procedure such that we observe at least k

failures when n items were put on test at time t = 0. Let

us say that the unit i has age a; when testing commences. It

o e v

is withdrawn at time Ly > a; if it does not fail in the interval
P (ai, Qi). Let 2, =® , i =1, 2,...,k (1 <k <n) so that we
observe at least k failures. Under this assumption, the random
variables given by eq. (50) are independent and exponentially

distributed. Let us define

U p TCLe) i=1,2,... k-1 (51)
. k-1,i 7 207
(t )
Then Uk-l ; are distributed as (k-1) order statistics from a
uniform distribution on [0, 1]. Hence, ;
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B, ;)= ¢ i=0,1,2,...,k1 (52)

and sample plots tend to follow the 45° line on the scaled

total time on test graphs. Since
17 -4 _ _ lyn-1
PIUM1, gl =1- Q-
~1-el (53)

we see that, under exponentiality, the plot is likely to lie

with probability 1 - e_1

=~ 0.632 initially below the 45° line,
If we have infant mortality this means initially a DFR distribution,
and we would of course expect the plot to initially lie below

the 45°. Now, we state an important theorem for the exponential v

distribution.
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5.1

then

Theorem

If F is exponential and we observe n failures during the test,

P {Total Time on Test Plot lies above 45°

linet

P {Total Time on Test Plot lies below 45° line}

1
n

Let us compute the probabilities of the following

associated with the behavior of the total time on test

Let

the four events considered above.

The plot is
The plot is
The plot is
The plot is

Then we have

P(E)) = (1 -
P(Ey) = 1 -
P(Ey) = (1
P(E,) = (1 -
Thus,

initially below
initially below
initially above

initially above

from the joint

and finally below the

and finally above the

and finally below the

and finally above the

density of Unl and Un

el _oq-2 ~ 0.23
20 - H by - Hnla g
Il o - Hlaoig
ol - 3 lxo.23

41

(54)

events

plots.

45° line.

45° line.
45° line.
45° 1line.

,n-1

it is clear that the event E2 is the most likely of

a8 s T




5.2 Concept of Stochastic Ordering and Its Applications to
Total Time on Test Plots

It is important to provide stochastic comparisons of total

time on test processes for various c¢lasses of distributions.,

A stochastic process X)), 0 -t - 11 stechastically dominates

st
(éﬂ) a process {Y(t), O < t - 1} if

EL{X(E), 0 < t < 11] > ELIY(E), O < t < 1}] (55)

for every increasing functional f. The symbol (%f) means
stochastic or probability ordering.

Based on the concept of stochastic ordering we have the
following result which can be used for stochastic ordering of
total time on test plots.

If the underlying failure distribution is IFRA (DFRA), then
the scaled total time on test plot stochastically dominates (is
dominated by) corresponding plots based on an exponential distri-

bution of the same sample size. We stated before that

H;l(t)/Hgl(l) lies above (below) the 45° line when F is IFRA (DFRA).

Thus, if the test data plot lies above the 45° line we should

reject an exponential model in favor of an IFRA (or IFR) model.

LoARS e e o




5.3 Analysis of Censored Data or Data with Suspended Items

Model identification for censored data is very difficult and
theoretical results are not available at the present time. However,

we can still test for exponentiality versus alternative models.

T

It is clear that FT < F for all continuous F, where

3

!

F(x) , 0 <
Fo(x) =+ (56)
1 , x> T

A
x

CA
-

Thus the scaled total time on test plots from censored
data always stochastically dominated scaled total time on test
plots from complete data having the same sample size. Similarly,

Fp % F, where

J’% F(x) , 0 <« x < F “(p)
Fp(x) =

|1 . x> FHp)

and p = %, so that again the total time on test plots when
observations are terminated at the k th failure dominate scaled
plots from complete data having the same sample size.

Many times we have test data where items are suspended.

Thus, the test data indicates that the i th item survived up to
time 2 and after that it was suspended. One can again model
this situation using the concept of stochastic ordering and
prove that the scaled total time on test plot for suspended

items tends t- lie above the scaled total time on test plot with-

out suspended items.
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6.0 Computation of Failure Rate & Mission Reliability

In Section 2.1, we proved that

£ wlow - 5 (58)
v = F(t)
which is the relationship between failure rate h(t) and
H%l(v). In order to compute empirically the failure rate, we
consider the case when the scaled total time on test plots are
joined by straight lines as shown in Figures 7 and 9. Let &

0= Ug < Uy < ... <y < 1 be the abscissa values of endpoints of

! linear segments. Then the successive slopes of the linear i

; g segments denoted by ap, ag,..., a4 is given by
-1 -1
[H “(u,) - H_~(u. )
(u; - uy;_ ) H ")
And, using eq. (58), it is clear that the successive
distribution failure rates are given by
HoL (1)

where A, is the failure rate for the ith 1linear segment. Thus,
E we assume that we have a constant failure rate Ai in the interval
i1 <t <ty o

can approximate the underlying distribution by a piecewise

i=20,1,...,k. In order to computé t;, we

exponential distribution with different failure rates. The

cumulative failure rare{k(tr)lestimate at the time t_ is given by

t

44




Hence,

r
ur = F(tr) =1 - exp[-izl Ai(ti

Thus, ti's can be recursively computed.

t, = -[log (1-u1)]/>\1
and in general

-1
Lt = [- log(l-u) -
r r jop 1001

- tyop))

D P (PR DR VR o

(62)

We have
(63)
. (64)

After we have computed the failure rate A, for the interval

t;jop St <ty, wecan compute the mission reliability for any

mission of duration T by observing that

Mission Reliability R(T)
T
exp[-f h(u) du]

Q

]

Hence, eq. (65) can be approximated by

R(T) = expl[- E A
i=1

where T is such that tr < T« tr+1‘

e R e

- 1. -

(ty - t5.1) = e (T -

)]




SECTION 11

THE EXPONENTIAL DISTRIBUTION AND

MISSION RELIABILITY ESTIMATION




THE EXPONENTIAL DISTRIBUTION AND
MISSION RELTIABILITY ESTIMATION

1.0 Introduction

The exponential distribution is an extremely popular and

easy to use distribution. It is applicable during the useful
life portion of a vehicle system when the failure rate can be
assumed to be constant. Thus, it would not be applicable for

extended predictions concerning vehicle durability.

e S

2.0 The Basic Statistical Model

The p.d.f. for an exponentially distributed random variable

t is given by

t/o

£(t) = 5 e ot (1)

W
o

In typical vehicle testing the quantity t, would represent the
miles (or kilometers) between failures (MMBF). The parameter
8 is the mean miles between failure. The failure rate is given

by A where

A= 1/0 (2)

The shape of the exponential p.d.f. is shown in Figure 1. 1In
this figure R(t) is the reliability. Analytically the reliability

1‘ function is calculated by

1 R(t) = e_t/O , t >0

Or, using the failure rate

R(L) - o M LS 0
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Figure 1 The Exponential Life Distribution (p.d.-f.)
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The MMBF for the exponential distribution is given by the
parameter 6. The chances of surviving this time can be found

from equation 3. Substituting into this equation gives

R(6) = e 1 = 0.368 (5)

Or, there is only a 37% chance of surviving the mean life when

the underlying distribution is exponential.
EXAMPLE 1

The mission length for a 5-ton truck is specified
as 75 miles. The MMBF is 2,150 miles. Let us find the
mission reliability.

Using equation 3 with 8 = 2,150 miles we find

e—75/2,150

R(75 miles) = = 0.97

which is the mission reliability.

EXAMPLE 2

The required mission reliability for an armored
personnel carrier is 0.92 with a mission length of 50 miles.
Assuming an exponential time to failure distribution let's
find the required vehicle MMBF.

Using equation 3 we can find that
6 =t /In (1/R ) (6)

where tm is the required mission length and Rm is the
required mission reliability. Substituting into equation

6 we find
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0 = 50 miles/In (1/0.92) = 600 miles

this means that a 600 mile MMBF is required to achieve
the desired reliability goal. Or, saying this another

way, the mission failure rate can be no greater than |

A =1/600 = 1.67 X 10~ failures/miles

o
=

Goal Setting Using Mission Reliability

Goal setting using mission reliability rather than vehicle
MMBF can be dangerous if one is not familiar with the consequences. ;
Figure 2 illustrates the percent improvement needed to accomplish
a given improvement in mission reliabilitv. This trade off b
is dependent on the initial reliability level of the vehicle.

As an example of using Figure 2 say we want a 57 improvement
in mission reliability., 1If the initial vehicle mission reli-
ability was 807 the required increase in vehicle MMBF would be
28.5%. 1t should be recognized that such a large change in
vehicle MMBF is usually extremely difficult to accomplish.

Note also that if the vehicle originally had a 0.90 mission i

B s e YTV AT

reliability the required increase in vehicle MMBF would be over

50%, which is impossible to accomplish in most PIP programs.

‘ 2.2 Estimating Mission Reliability

1 The duration of testing for each vehicle is normally
specified by the vehicle developer. Testing is then carried
out at a designated proving ground. 1In life testing terminology

this is Type IT (or time) censored life testing. I
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Mission Reliability Improvement as a Function of

Percent Improvement in Vehicle MMBF
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2.2.1 Point Estimate: The vehicle MMBF is estimated by

D>

_ Total accumulated test miles _T (7
Total number of scored failures r

The mission reliability is then estimated as

ﬁm - e—tm/e (8)

where th is the mission length.

2.2.2 Confidence Limit Estimate: The lower 100(1l-a)7% confidence

limit on the vehicle MMBF is given by

2T
2 = (9)
xa, 2r+2

N\
DD

where T is the total accumulated test time and r is the total

number of scored failures. The quantity xé is obtained

, 2r+2
from a chi-square table using 2r+2 as the deprees of freedom.
A convenient approximation based on the normal dis:~ibution

is given by

4T
[za + v4r+3]?

A
=

(10)

where z, is a standard normal variate[1.14] This approximation is
fairly good with r > 5 and gets better with increasing r.

Common values for z, are listed below.

Ve aad e Bt e
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Table I: Standard Normal Variates

Confidence Level (1-a) Confidence Factor;jgﬂl
957 1645 )
YO 1.281 |
80% 0.841
70% 0.525
50% 0.0

A convenient way to quickly approximate a 507 confidence

limit is given by

T
+0.75 < ¢ (11) ,5

e -
2 e ezaim

where r is the number of failures.

S

The 100(1-a)7% lower confidence limit on mission reliability

is given by

-t /L
e ™ < R (12)

S arenes

li‘ where L is the 100(1l-a)% lower confidence limit on the MMBF as 3
calculated from equations 9, 10, or 11. Of course tm is the
mission length.

A 507 lower confidence limit on mission reliability is

| conveniently approximated by

e < R (13)

; -t (r+0.75)/T
| <%,
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EXAMPLE 3

Three XM-1 tanks were each scheduled for 4,000 miles
of testing. The test produced 26 scored mission failures.

Let's estimate the mission reliability.

Using equation 7 the vehicle MMBF is estimated as

] 3 tanks X 4,000 mi/tank

0= 26 failures = 462 miles

Assuming a mission length of tm = 100 miles, the point
estimate of mission reliability is obtained from equation 8

and is

_ 117462

Rm : 0.81

The 50% confidence limit is calculated from equation 13

and is

-100(26+0.75)/12,000
e <

0.80 < R

S T v wa et

2.3 Sequential Testing

. Sequential testing allows one to continually assess
vehicle acceptance on a day by day basis. As soon as an
accept (or reject) decision is made the test is terminated.

l This method minimizes testing and is more economical and fuel
= efficient. However, sequential acceptance tests are slightly

harder to design.
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e
The parameter that determine a sequential life test are
I P amd g, “l' The retationship hetween these parametces s }
shown in Figure 3. As can be seen in this figure these points f
determine the Operating Characteristic (0.C.) curve for the test. ﬂ
Intermediate points on the 0.C. curve can be calculated from
the equation in Table II with i = 0.1 and/or 0.5.
Table II: Calculation of Sequential 0.C. Curve
True Value of MMBF Probability of Accepting Vehicle f
’)0 0 ‘,
o, i
1 (g2 L s
0; = iy (1-aty/ (8t-ah)
i 8,-6
.. 1 70
1)
10
1 1 -8
- B
A T-a
- 18
¢4
|: Once the 0.C. curve is decided on, the test is determined.
#-‘ In order to set up the test boundaries the following quantities
must be calculated.
*( °1- % 1
b= [ ] (14)
0 01 In(elleo)




0 )

_ 0 1 1-8
1“('1“;_5“1')
h = —& (16)
1n((1/00)

These quantities are used to draw the sequential life testing
graph as shown in Figure 4. Both lines are parallel with slope
b. This graph allows monitoring of the test on a day to day

basis showing the results visually.

EXAMPLE 4

A 10-ton Hi-Mo vehicle must demonstrate an MMBF of
2,500 miles in an IP test. It is decided to use a
sequential test in an effort to minimize fuel consumption
by minimizing testing.

In order to design the test the following parameters

are selected

B = 0.20
91 = 2,500 miles
a = 0.10
00 = 2,000 miles

By using Table 1I with i = 0.5 an intermediate point on

the 0.C. curve is calculated as

¢ = 2,111

0.5
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Figure 5 0.C. Curve for a Vehicle Acceptance Test
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with a probability of acceptance of 0.22. The resulting 0.C.
% curve is sketched in as shown in Figure 5. If one does not
like this 0.C. curve then the parameters must be changed. )
The quantities for the sequential test graph are found é
from equations 14, 15, and 16. 3

In this case,

b = 4.48 X 10°* failures/mile 1
h, = ?
gy = 20,79
h, = 6.740

These factors can now be used to construct the sequential graph.

This is easier to do if the slope is expressed as

b = 4.48 failures
10,000 miles

17)

The points hx and hy are scaled off on the x and y axes as ;

shown in Figure 6. Straight lines are then drawn through these

points using the slope scale as determined from equation 17.
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THE BINOMIAL DISTRIBUTION AND
MISSION RELIABILITY ESTIMATION

1.0 Introduction

A vehicle mission is a precisely defined guantity that spe-

cifies such things as ground terrain, vehicle speeds, weapon usage,

etc. The test profile can be looked at as a series of vehicle
missions. During testing, the vehicle either succeeds or fails

each mission. When the test is viewed from this standpoint, the

binomial distribution can be used to determine mission reliability.

2.0 Basic Statistical Model

The probability model for this situation is

= (" y - n-y =
p(y) = (p) Ry (I-Rp) , y=0,1,2,...,n (1)
where
Rm = mission reliability
n = total number of missions (completed and attempted)
y = total number of missions successfully completed

The quantity p(y) is the probability of completing y missions
successfully out of n attempts. This is the well known

binomial distribution.

Example 1

The mission reliability for an armored personnel
carries is Rm - 0.80, 11 5 vehicles are sent on a mission
what is the probability that at least 3 will succeed?

Here we want

p(y > 3) = p(y = 3) + p(y = 4) + p(y = 5)

which is the probability of three or more successes.

}




In this case,

p(y) = (3) 0.8Y 0.2°7Y

and for example

P(y = 3) = 55w 0.87 0.27 = 0.205 %
12! |
Performing similar calculations gives ?
p(y =2 3) = 0.943
Or, there is a 94.3% chance that at least three vehicles :
will complete the mission. ;
i,
i
i
t
o
E !¢ !
: 4: '\
|
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3.0 Mission Reliability Using the Binomial Distribution

3.1 Estimating Mission Reliability

For this testing situation both point and confidence interval 1
estimates of mission reliability can be obtained. The basic
input data is n, the number of missions attempted and y, the ]

number of missions successfully completed.

3.1.1 Point Estimate: The noint estimate of mission reliability

is obtained by:

ﬁm =2 (2)

3.1.2 Confidence Limit Estimate: An exact 100(1l-a)7 lower

confidence limit on the reliability is given by

(3)

R, =77 F ?y '
y (n-y+1) w,2(n-y+1),2y
i asil i n F- s . Ml
where Fu,2(n—v+1),2y is easily obtained from F-tables [16] 1so
recall that,

total number of missions

n

y number of successful missions
B The F-tables that are usually available are somewhat limited.

Therefore, it is convenient to have an approximation for the

confidence limit that uses the standard normal distribution.

The lower confidence on mission reliability can be approximated by
(y-1)
Y (4)

L=
/n(n- +1)
n+za —T§:¥7-_

z, = the standard normal variate as given in
Table I, below.

R
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Table I: Standard Normal Variates

Confidence Level(l-q) Confidence Factor igﬂl
95% 1.645
90% 1.281
80% 0.841
70% 0.525
50% 0.0

Frequently 50% confidence limits are used in reliability

Note that the 50% lower confidence limit is approximated
R, = ¥-1 (5)
L n
Example 2

A TOW weapon system has completed a test schedule.
The test is equivalent to 60 missions. Dividing the test
schedule up into 60 missions results in seven failed

missions. Let's estimate the mission reliability.

y = 60 - 7 = 53 successful missions
out of
n = 60 missions

Then the point estimate for mission reliability is

56— 53 _
R =5 = 0.883

The lower 757 confidence level is found from equation 3,
with
Fo.25, 8, 106 = L1
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substituting into the equation gives

= 0.835

23
53 + (8 x 1.31)

Or, the 75% lower confidence on mission reliabflity is
0.835 < Rm

If equation 4 was used to approximate the lower limit,

the value obtained would be

R = 32 = 0.838

L 60 + 0.675_ [60(60-53+1)
V""ST“““‘

As can be seen, this approximation provides limits that

e TR YK . ..

are reasonably close to the exact values. y
3.1.3 Bavesian Confidence Limits: Il one wants to use a

; Bayesian approach slightly higher confidence limits will result. E

The Bayesian 100(1-w)7 lower confidence limit on reliability is

given by

- (y+1)
- (6)
&’ (y*1) + (n-y+1) F 9(n-y+1),2(v+1)

This formula was developed under the assumption that R.m had

F an equally likely chance of falling anywhere in the interval

‘ [0-17, [Sce 16, for derivatrion). Thus, the above limit might be
. considered a conservative Bayesian limit.
1 Example 3

Reconsidering example 2 with |

n = 60

]

53

y




A Bayesian limit can be obtained. The required F value is
Fo.25, 8, 108 = 131 .;
Then the confidence limit is éf
S = 0.837
54 + (8 x 1.31) T
Or,
0.837 < R |
{
.
i
i
HE
!
3
L
%
f 1
S
a
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3.2 Success Testing

In planning a reliability test it is sometimes helpful to

know the number of successful missions required to demonstrate

a minimum reliability at a desired level of confidence. The

formulas for this situation will now be given. |
For the special case where y = 0 (i.e. no failures), the

lower 100(1-a)% confidence limit on the reliability is

' _ 1/n
é RL— ¢ 4
where
' a = the level of significance 1
, 1
n = the sample size (i.e. number of missions) 3

Then with 100(1-0)% confidence, we can say that

RL < Rm

where Rm is the true mission reliability.
If we let C = 1 - a be the desired confidence level (i.e.
0.80, 0.90, etc.) then the necessary sample size to demonstrate

a desired reliability level is

1nR

f, For example, if a mission reliability of Rm = (.80 is to be

| demonstrated at 90% confidence we have

In(0.10) _

T 1In(0.80) _ L

Thus, L1 missions must be completed with no failures. This is

frequently referred to as success testing.
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Example 4

A fuel trailer must be tested to demonstrate that it
has an 807 mission reliability at 507 confidence. Let's
determine the number of missions it must complete without
failure in order to demonstrate the required reliability.

Substituting into equation 8 with

C = 0.50
R =0.80
gives
- B

Or, three successful missions are required.
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